Extension of Ridgelet Transform to Tempered Boehmians

نویسنده

  • R. Roopkumar
چکیده

We extend the ridgelet transform to the space of tempered Boehmians consistent with the ridgelet transform on the space of tempered distributions. We also prove that the extended ridgelet transform is continuous, linear, bijection and the extended adjoint ridgelet transform is also linear and continuous. AMS Mathematics Subject Classification (2010): 44A15, 44A35, 42C40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fourier transform and the exchange property

Since Boehmians were introduced, extensions of the Fourier transform to spaces of Boehmians attracted a lot of attention (see [2, 3, 4, 5, 6, 7, 8, 9]). In some cases, the range of the extended Fourier transform is a space of functions. In other constructions, the range is a space of distributions or a space of Boehmians. In this paper, we would like to consider the space of tempered Boehmians ...

متن کامل

S-Transform on a Generalized Quotient Space

This paper investigates the S -transform on the space of tempered Boehmians. Inversion and properties are also discussed.

متن کامل

A Brief Investigation of a Stieltjes Transform in a Class of Boehmians

Various integral transforms have been extended to various spaces of Boehmians. In this article, we discuss the Stieltjes transform in a class of Boehmians. The presented transform preserves many properties of the classical transform in the space of Boehmians.

متن کامل

Wavelet Analysis on a Boehmian Space

We extend the wavelet transform to the space of periodic Boehmians and discuss some of its properties. 1. Introduction. The concept of Boehmians was introduced by J. Mikusi´nski and P. Mikusi´nski [7], and the space of Boehmians with two notions of conver-gences was well established in [8]. Many integral transforms have been extended to the context of Boehmian spaces, for example, Fourier trans...

متن کامل

Ridgelet transform on the sphere

We first revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012